Session 2.d: New Technologies to Study and Teach Climate Variability

Focus on Issue and Discuss Technologies
Jon Hare
Director, NOAA Narragansett Laboratory Chief, NEFSC Oceanography Branch

Oceanographic gear deployment – NOAA Ship Delaware II – February 2011
Northeast U.S. Continental Shelf

Wide-array of observing activities
Research Vessels
Merchant Vessels
Fishing Gear
Nets
Instruments
Drifters
Technologies

- Long-term observations
- Ships
- Fixed Measurements (e.g., moorings)
- Satellites
- Models
- Autonomous Samplers
- Data Integration
Take Home Points

• Climate Variability and Change
• Fisheries Effective by Climate (and Fishing)
• Winners and Losers in the Region

15 mm lobster – Georges Bank – June 2012
2012 Warmest Summer on the Northeast U.S. Shelf
2012 Warmest Summer on the Northeast U.S. Shelf
Climate Variability and Change

Change – long-term difference (18%)
> decades

Variability – short & medium term (82%)
years, El Niño, North Atlantic Oscillation
Fisheries Effected by Climate (& Fishing)
Fisheries Effected by Climate (\& Fishing)
Fisheries Effected by Climate (& Fishing)

Fisheries

Fishing XX
Climate Change X
Climate Variability XX
Other X(X?)

http://www.nefsc.noaa.gov/rcb/photogallery/sharks/sharks.html
Climate Variability and Change

Projected Northeast U.S. Marine Ecosystem Summer Temperature
Climate Variability and Change

General Circulation Models

Simulate Atmosphere-Ocean-Earth System

Used by IPCC to make global climate projections
Climate Variability and Change

Projected Northeast U.S. Marine Ecosystem Summer Temperature
Winners and Losers in the Region

Atlantic croaker – a potential ‘winner’ of climate change in the northeast region

Atlantic cod – a potential ‘loser’ of climate change in the northeast region
Climate Factors

- Temperature
- Salinity
- Stratification
- Ocean Circulation
- Ocean Acidification
- Primary Production

Projected Change in Temperature
1965-2005 compared to 2060-2099
Climate Factors

Hurricanes – Variability and Change(?)

Photo Credit: Stephen Coyne
https://www.facebook.com/NewportBuzz

List of New England hurricanes

<table>
<thead>
<tr>
<th>Storm</th>
<th>Category</th>
<th>Peak intensity</th>
<th>Intensity at landfall</th>
<th>Season</th>
<th>Date of landfall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hurricane Six</td>
<td>Category 3</td>
<td>Category 3</td>
<td></td>
<td>1869</td>
<td>September 9, 1869</td>
</tr>
<tr>
<td>1869 Saxby Gale</td>
<td>Category 2</td>
<td>Category 2</td>
<td></td>
<td>1869</td>
<td>October 4, 1869</td>
</tr>
<tr>
<td>Hurricane Five</td>
<td>Category 1</td>
<td>Tropical Storm</td>
<td></td>
<td>1872</td>
<td>October 27, 1872</td>
</tr>
<tr>
<td>Hurricane Six</td>
<td>Category 1</td>
<td>Tropical Storm</td>
<td></td>
<td>1874</td>
<td>September 30, 1874</td>
</tr>
<tr>
<td>San Felipe Hurricane</td>
<td>Category 3</td>
<td>Tropical Depression</td>
<td></td>
<td>1876</td>
<td>September 19, 1876</td>
</tr>
<tr>
<td>Unnamed</td>
<td>Category 3</td>
<td>Extratropical Storm</td>
<td></td>
<td>1877</td>
<td>October 5, 1877</td>
</tr>
<tr>
<td>Gale of 1878</td>
<td>Category 2</td>
<td>Extratropical Storm</td>
<td></td>
<td>1878</td>
<td>October 24, 1878</td>
</tr>
<tr>
<td>Hurricane Two</td>
<td>Category 3</td>
<td>Category 1</td>
<td></td>
<td>1879</td>
<td>August 19, 1879</td>
</tr>
<tr>
<td>Tropical Storm Eleven</td>
<td>Tropical Storm</td>
<td>Extratropical Storm</td>
<td></td>
<td>1880</td>
<td>October 23, 1880</td>
</tr>
<tr>
<td>Hurricane Three</td>
<td>Category 3</td>
<td>Tropical Storm</td>
<td></td>
<td>1888</td>
<td>August 22, 1888</td>
</tr>
<tr>
<td>Tropical Storm Five</td>
<td>Tropical Storm</td>
<td>Extratropical Storm</td>
<td></td>
<td>1888</td>
<td>September 12, 1888</td>
</tr>
<tr>
<td>Hurricane Six</td>
<td>Category 1</td>
<td>Category 1</td>
<td></td>
<td>1888</td>
<td>September 26, 1888</td>
</tr>
<tr>
<td>Hurricane Six</td>
<td>Category 2</td>
<td>Tropical Storm</td>
<td></td>
<td>1889</td>
<td>September 25, 1889</td>
</tr>
<tr>
<td>Hurricane Four</td>
<td>Category 3</td>
<td>Category 1</td>
<td></td>
<td>1893</td>
<td>August 24, 1893</td>
</tr>
<tr>
<td>1893 Sea Islands Hurricane</td>
<td>Category 3</td>
<td>Tropical Storm</td>
<td></td>
<td>1893</td>
<td>August 29, 1893</td>
</tr>
</tbody>
</table>

Climate Factors

- Storm frequency
- Storm strength
- Sea level

http://www.sciencemag.org/content/327/5964/454.full
Climate Factors

- Storm frequency
- Storm strength
- Sea level

0.3 to 1.6 feet
Not including ice melt
Take Home Points

• Climate Variability and Change
• Fisheries Affected by Climate (and Fishing)
• Winners and Losers in the Region

Sunset – NOAA Ship Delaware II – February 2012
Technologies

- Long-term observations
- Ships
- Fixed Measurements (e.g., moorings)
- Satellites
- Models
- Autonomous Samplers
- Data Integration
For more information

- The Discovery of Global Warming (http://www.aip.org/history/climate/)
- Ecosystem Advisory for Northeast U.S. Continental Shelf Large Marine Ecosystem (http://www.nefsc.noaa.gov/ecosys/advisory/current/advisory.html)